“En route” to more equitable urban mobility, thanks to artificial intelligence

Télécom SudParis

This article was originally published by Bastien Contreras for the scientific magazine I'MTech (https://imtech.wp.imt.fr/en/2022/03/07/en-route-to-more-equitable-urban-mobility-thanks-to-artificial-intelligence/)

Individual cars represent a major source of pollution. But how can you transition from using your own car when you live far from the city center, in an area with little access to public transport? Andrea Araldo, researcher at Télécom SudParis is undertaking a research project that aims to redesign city accessibility, to benefit those excluded from urban mobility.

The transport sector is responsible for 30% of greenhouse gas emissions in France. And when we look more closely, the main culprit appears clearly: individual cars, responsible for over half of the CO2 discharged into the atmosphere by all modes of transport.

To protect the environment, car drivers are therefore thoroughly encouraged to avoid using their car, instead opting for a means of transport that pollutes less. However, this shift is impeded by the uneven distribution of public transport in urban areas. Because while city centers are generally well connected, accessibility proves to be worse on the whole in the suburbs (where walking and waiting times are much longer). This means that personal cars appear to be the only viable option in these areas.

The MuTAS (Multimodal Transit for Accessibility and Sustainability) project, selected by the National Research Agency (ANR) as part of the 2021 general call for projects, aims to reduce these accessibility inequalities at the scale of large cities. The idea is to provide the keys to offering a comprehensive, equitable and multimodal range of mobility options, combining public transport with fixed routes and schedules with on-demand transport services, such as chauffeured cars or rideshares. These modes of transport could pick up where buses and trains leave off in less-connected zones. “In this way, it is a matter of improving accessibility of the suburbs, which would allow residents to leave their personal car in the garage and take public transport, thereby contributing to reducing pollution and congestion on the roads”, says Andrea Araldo, researcher at Télécom SudParis and head of the MuTAS project, but formerly a driving school owner and instructor!

Improving accessibility without sending costs sky-high

But how can on-demand mobility be combined with the range of public transport, without leading to overblown costs for local authorities? The budget issue remains a central challenge for MuTAS. The idea is not to deploy thousands of vehicles on-demand to improve accessibility, but rather to make public transport more equitable within urban areas, for an equivalent cost (or with a limited increase).

This means that many questions must be answered, while respecting this constraint. In which zones should on-demand mobility services be added? How many vehicles need to be deployed? How can these services be adapted to different times throughout the day? And there are also questions regarding public transport. How can bus and train lines be optimized, to efficiently coordinate with on-demand mobility? Which are the best routes to take? Which stations can be eliminated, definitively or only at certain times?

To resolve this complex optimization issue, Araldo and her teams have put forward a strategy using artificial intelligence, in three phases.

Optimizing a graph…

The first involves modeling the problem in the form of a graph. In this graph, the points correspond to bus stops or train stations, with each line represented by a series of arcs, each with a certain trip time. “What must be noted here is that we are only using real-life, public data,” emphasizes Araldo. “Other research has been undertaken around these issues, but at a more abstract level. As part of MuTAS, we are using openly available, standardized data, provided by several cities around the world, including routes, schedules, trip times etc., but also population density statistics. This means we are modeling real public transport systems.” On-demand mobility is also added to the graph in the form of arcs, connecting less accessible areas to points in the network. This translates the idea of allowing residents far from the city center to get to a bus or train station using chauffeured cars or rideshares.

To optimize travel in a certain area, researchers start by modeling public transport lines with a graph.

…using artificial intelligence

This modeled graph acts as the starting point for the second phase. In this phase, a reinforcement learning algorithm is introduced, a method from the field of machine learning. After several iterations, this is what will determine what improvements need to be made to the network, for example, deactivating stations, eliminating lines, adding on-demand mobility services, etc. “Moreover, the system must be capable of adapting its structure dynamically, according to shifts in demand throughout the day,” adds the researcher. “The traditional transport network needs to be dense and extended during peak hours, but it can contract significantly in off-peak hours, with on-demand mobility taking over for the last kilometers, which is more efficient for lower numbers of passengers.”

Contact Carnot TSN

Olivier Martinot

Director of Innovation and Corporate Relations

Telecom SudParis